Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Ecol Evol ; 24(1): 2, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177987

RESUMO

Foskett Spring in Oregon's desert harbors a historically threatened population of Western Speckled Dace (Rhinichthys klamathensis). Though recently delisted, the dace's recruitment depends upon regular removal of encroaching vegetation. Previous studies assumed that Foskett Dace separated from others in the Warner Valley about 10,000 years ago, thereby framing an enigma about the population's surprising ability to persist for so long in a tiny habitat easily overrun by plants. To investigate that persistence and the effectiveness of interventions to augment population size, we assessed genetic diversity among daces inhabiting Foskett Spring, a refuge at Dace Spring, and three nearby streams. Analysis revealed a robust effective population size (Ne) of nearly 5000 within Foskett Spring, though Ne in the Dace Spring refuge is just 10% of that value. Heterozygosity is slightly lower than expected based on random mating at all five sites, indicating mild inbreeding, but not at a level of concern. These results confirm the genetic health of Foskett Dace. Unexpectedly, genetic differentiation reveals closer similarity between Foskett Dace and a newly discovered population from Nevada's Coleman Creek than between Foskett Dace and dace elsewhere in Oregon. Demographic modeling inferred Coleman Creek as the ancestral source of Foskett Dace fewer than 1000 years ago, much more recently than previously suspected and possibly coincident with the arrival of large herbivores whose grazing may have maintained open water suitable for reproduction. These results solve the enigma of persistence by greatly shortening the duration over which Foskett Dace have inhabited their isolated spring.


Assuntos
Cyprinidae , Animais , Cyprinidae/genética , Rios , Ecossistema , Oregon
2.
Mol Ecol ; 33(2): e17210, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38010927

RESUMO

Emerging infectious diseases in wildlife species caused by pathogenic fungi are of growing concern, yet crucial knowledge gaps remain for diseases with potentially large impacts. For example, there is detailed knowledge about host pathology and mechanisms underlying response for chytridiomycosis in amphibians and white-nose syndrome in bats, but such information is lacking for other more recently described fungal infections. One such disease is ophidiomycosis, caused by the fungus Ophidiomyces ophidiicola, which has been identified in many species of snakes, yet the biological mechanisms and molecular changes occurring during infection are unknown. To gain this information, we performed a controlled experimental infection in captive Prairie rattlesnakes (Crotalus viridis) with O. ophidiicola at two different temperatures: 20 and 26°C. We then compared liver, kidney, and skin transcriptomes to assess tissue-specific genetic responses to O. ophidiicola infection. Given previous histopathological studies and the fact that snakes are ectotherms, we expected highest fungal activity on skin and a significant impact of temperature on host response. Although we found fungal activity to be localized on skin, most of the differential gene expression occurred in internal tissues. Infected snakes at the lower temperature had the highest host mortality whereas two-thirds of the infected snakes at the higher temperature survived. Our results suggest that ophidiomycosis is likely a systemic disease with long-term effects on host response. Our analysis also identified candidate protein coding genes that are potentially involved in host response, providing genetic tools for studies of host response to ophidiomycosis in natural populations.


Assuntos
Fenômenos Biológicos , Dermatomicoses , Animais , Dermatomicoses/genética , Dermatomicoses/veterinária , Dermatomicoses/microbiologia , Crotalus , Perfilação da Expressão Gênica
3.
Proc Natl Acad Sci U S A ; 120(43): e2303043120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844221

RESUMO

Theory predicts that genetic erosion in small, isolated populations of endangered species can be assessed using estimates of neutral genetic variation, yet this widely used approach has recently been questioned in the genomics era. Here, we leverage a chromosome-level genome assembly of an endangered rattlesnake (Sistrurus catenatus) combined with whole genome resequencing data (N = 110 individuals) to evaluate the relationship between levels of genome-wide neutral and functional diversity over historical and future timescales. As predicted, we found positive correlations between genome-wide estimates of neutral genetic diversity (π) and inferred levels of adaptive variation and an estimate of inbreeding mutation load, and a negative relationship between neutral diversity and an estimate of drift mutation load. However, these correlations were half as strong for projected future levels of neutral diversity based on contemporary effective population sizes. Broadly, our results confirm that estimates of neutral genetic diversity provide an accurate measure of genetic erosion in populations of a threatened vertebrate. They also provide nuance to the neutral-functional diversity controversy by suggesting that while these correlations exist, anthropogenetic impacts may have weakened these associations in the recent past and into the future.


Assuntos
Crotalus , Variação Genética , Humanos , Animais , Crotalus/genética , Genoma/genética , Genômica/métodos , Endogamia , Espécies em Perigo de Extinção
4.
Evolution ; 77(3): 690-704, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36626799

RESUMO

Small populations are vulnerable to increased genetic load and drift that can lead to reductions in fitness and adaptive potential. By analyzing 66 individual whole genomes of Montezuma Quail (Cyrtonyx montezumae) from multiple populations, we illustrate how genetic load is dynamic over evolutionary time. We show that Montezuma Quail are evolving like a ring species, where the terminal extant populations from Arizona and Texas have been separated for ~16,500 years. The Texas populations have remained small but stable since the separation, whereas the Arizona population is much larger today but has been contracting for thousands of years. Most deleterious mutations across the genome are young and segregating privately in each population and a greater number of deleterious alleles are present in the larger population. Our data indicate that ancestral load is purged during strong bottlenecks, but the reduced efficiency of selection in small populations means that segregating deleterious mutations are more likely to rise in frequency over time. Forward-time simulations indicate that severe population declines in historically large populations is more detrimental to individual fitness, whereas long-term small populations are more at risk for reduced adaptive potential and population-level fitness. Our study highlights the intimate connections among evolutionary history, historical demography, genetic load, and evolutionary potential in wild populations.


Assuntos
Carga Genética , Seleção Genética , Evolução Biológica , Demografia , Análise de Sequência de DNA , Mutação , Variação Genética
5.
Evol Appl ; 14(6): 1540-1557, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34178103

RESUMO

Populations with higher genetic diversity and larger effective sizes have greater evolutionary capacity (i.e., adaptive potential) to respond to ecological stressors. We are interested in how the variation captured in protein-coding genes fluctuates relative to overall genomic diversity and whether smaller populations suffer greater costs due to their genetic load of deleterious mutations compared with larger populations. We analyzed individual whole-genome sequences (N = 74) from three different populations of Montezuma quail (Cyrtonyx montezumae), a small ground-dwelling bird that is sustainably harvested in some portions of its range but is of conservation concern elsewhere. Our historical demographic results indicate that Montezuma quail populations in the United States exhibit low levels of genomic diversity due in large part to long-term declines in effective population sizes over nearly a million years. The smaller and more isolated Texas population is significantly more inbred than the large Arizona and the intermediate-sized New Mexico populations we surveyed. The Texas gene pool has a significantly smaller proportion of strongly deleterious variants segregating in the population compared with the larger Arizona gene pool. Our results demonstrate that even in small populations, highly deleterious mutations are effectively purged and/or lost due to drift. However, we find that in small populations the realized genetic load is elevated because of inbreeding coupled with a higher frequency of slightly deleterious mutations that are manifested in homozygotes. Overall, our study illustrates how population genomics can be used to proactively assess both neutral and functional aspects of contemporary genetic diversity in a conservation framework while simultaneously considering deeper demographic histories.

6.
Mol Ecol ; 30(17): 4147-4154, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34191374

RESUMO

Since allozymes were first used to assess genetic diversity in the 1960s and 1970s, biologists have attempted to characterize gene pools and conserve the diversity observed in domestic crops, livestock, zoos and (more recently) natural populations. Recently, some authors have claimed that the importance of genetic diversity in conservation biology has been greatly overstated. Here, we argue that a voluminous literature indicates otherwise. We address four main points made by detractors of genetic diversity's role in conservation by using published literature to firmly establish that genetic diversity is intimately tied to evolutionary fitness, and that the associated demographic consequences are of paramount importance to many conservation efforts. We think that responsible management in the Anthropocene should, whenever possible, include the conservation of ecosystems, communities, populations and individuals, and their underlying genetic diversity.


Assuntos
Ecossistema , Genética Populacional , Animais , Produtos Agrícolas , Variação Genética , Humanos , Gado
7.
Genetica ; 147(5-6): 337-350, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31782071

RESUMO

The major histocompatibility complex (MHC) of the adaptive immune system and the toll-like receptor (TLR) family of the innate immune system are involved in the detection of foreign invaders, and thus are subject to parasite-driven molecular evolution. Herein, we tested for macroevolutionary signatures of selection in these gene families within and among all three major clades of birds (Paleognathae, Galloanserae, and Neoaves). We characterized evolutionary relationships of representative immune genes (Mhc1 and Tlr2b) and a control gene (ubiquitin, Ubb), using a relatively large and phylogenetically diverse set of species with complete coding sequences (34 orthologous loci for Mhc1, 29 for Tlr2b, and 37 for Ubb). Episodic positive diversifying selection was found in the gene-wide phylogenies of the two immune genes, as well as at specific sites within each gene (8.5% of codon sites in Mhc1 and 2.7% in Tlr2b), but not in the control gene (Ubb). We found 20% of lineages under episodic diversifying selection in Mhc1 versus 9.1% in Tlr2b. For Mhc1, selection was relaxed in the Galloanserae and intensified in the Neoaves relative to the other clades, but no differences were detected among clades in the Tlr2b gene. In summary, we provide evidence of episodic positive diversifying selection in key immune genes and demonstrate differential strengths of selection within Class Aves, with the adaptive gene showing an increased divergence and evolutionary rate over the innate gene, contributing to the growing understanding of vertebrate immune gene evolution.


Assuntos
Proteínas Aviárias/genética , Aves/genética , Antígenos de Histocompatibilidade/genética , Seleção Genética , Receptores Toll-Like/genética , Animais , Aves/imunologia , Taxa de Mutação , Ubiquitina/genética
8.
BMC Evol Biol ; 19(1): 107, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31113360

RESUMO

BACKGROUND: In the arms race between hosts and parasites, genes involved in the immune response are targets for natural selection. Toll-Like Receptor (TLR) genes play a role in parasite detection as part of the innate immune system whereas Major Histocompatibility Complex (MHC) genes encode proteins that display antigens as part of the vertebrate adaptive immune system. Thus, both gene families are under selection pressure from pathogens. The bananaquit (Coereba flaveola) is a passerine bird that is a common host of avian malarial parasites (Plasmodium sp. and Haemoproteus sp.). We assessed molecular variation of TLR and MHC genes in a wild population of bananaquits and identified allelic associations with resistance/susceptibility to parasitic infection to address hypotheses of avian immune response to haemosporidian parasites. RESULTS: We found that allele frequencies are associated with infection status at the immune loci studied. A consistent general trend showed the infected groups possessed more alleles at lower frequencies, and exhibited unique alleles, compared to the uninfected group. CONCLUSIONS: Our results support the theory of natural selection favoring particular alleles for resistance while maintaining overall genetic diversity in the population, a mechanism which has been demonstrated in some systems in MHC previously but understudied in TLRs.


Assuntos
Malária/parasitologia , Parasitos/genética , Passeriformes/genética , Passeriformes/imunologia , Animais , Frequência do Gene/genética , Loci Gênicos , Haemosporida/fisiologia , Imunogenética , Complexo Principal de Histocompatibilidade/genética , Passeriformes/parasitologia , Plasmodium/fisiologia , Análise de Sequência de DNA
9.
Sci Rep ; 9(1): 3748, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842460

RESUMO

Walnuts (Juglans spp.) are economically important nut and timber species with a worldwide distribution. Using the published Persian walnut genome as a reference for the assembly of short reads from six Juglans species and several interspecific hybrids, we identified simple sequence repeats in 12 Juglans nuclear and organellar genomes. The genome-wide distribution and polymorphisms of nuclear and organellar microsatellites (SSRs) for most Juglans genomes have not been previously studied. We compared the frequency of nuclear SSR motifs and their lengths across Juglans, and identified section-specific chloroplast SSR motifs. Primer pairs were designed for more than 60,000 SSR-containing sequences based on alignment against assembled scaffold sequences. Of the >60,000 loci, 39,000 were validated by e-PCR using unique primer pairs. We identified primers containing 100% sequence identity in multiple species. Across species, sequence identity in the SSR-flanking regions was generally low. Although SSRs are common and highly dispersed in the genome, their flanking sequences are conserved at about 90 to 95% identity within Juglans and within species. In a few rare cases, flanking sequences are identical across species of Juglans. This comprehensive report of nuclear and organellar SSRs in Juglans and the generation of validated SSR primers will be a useful resource for future genetic analyses, walnut breeding programs, high-level taxonomic evaluations, and genomic studies in Juglandaceae.


Assuntos
Juglans/genética , Repetições de Microssatélites/genética , Sequência Conservada/genética , Etiquetas de Sequências Expressas , Marcadores Genéticos/genética , Genoma/genética , Genoma de Planta/genética , Polimorfismo Genético/genética , Análise de Sequência de DNA/métodos
10.
J Hazard Mater ; 301: 250-8, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26368799

RESUMO

A bacterial strain identified as Pseudomonas sp. RPT 52, was isolated from an agricultural field by soil enrichment technique. The bacterial strain was able to metabolize three different chlorinated pesticides; imidacloprid, endosulfan and coragen (belonging to neonicotinoid, organochlorine and anthranillic diamide categories, respectively). RPT 52 was able to degrade 46.5%, 96.6%, 92.7% and 80.16% of 0.5 mM of imidacloprid, endosulfan α, endosulfan ß and coragen, respectively, in minimal medium over a period of 40 h, when provided as sole source of carbon and energy. Degradation kinetics showed that imidacloprid, endosulfan α and endosulfan ß followed first order kinetics whereas coragen followed zero order kinetics. Toxicity studies show reduction in toxicity of the parent compound when degraded by RPT 52. Laboratory scale, soil microcosm studies showed that strain RPT 52 is a suitable candidate for bioremediation of endosulfan and coragen contaminated sites. Thus, RPT 52 holds potential for toxicity reduction in the affected environment.


Assuntos
Endossulfano/metabolismo , Imidazóis/metabolismo , Inseticidas/metabolismo , Nitrocompostos/metabolismo , Pseudomonas/metabolismo , Poluentes do Solo/metabolismo , ortoaminobenzoatos/metabolismo , Biodegradação Ambiental , Sobrevivência Celular/efeitos dos fármacos , Endossulfano/toxicidade , Humanos , Imidazóis/toxicidade , Inseticidas/toxicidade , Células MCF-7 , Neonicotinoides , Nitrocompostos/toxicidade , Pseudomonas/efeitos dos fármacos , Pseudomonas/crescimento & desenvolvimento , Microbiologia do Solo , Poluentes do Solo/toxicidade , ortoaminobenzoatos/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...